Efficient Production of Gene-Modified Mice using Staphylococcus aureus Cas9
نویسندگان
چکیده
The CRISPR/Cas system is an efficient genome-editing tool to modify genes in mouse zygotes. However, only the Streptococcus pyogenes Cas9 (SpCas9) has been systematically tested for generating gene-modified mice. The protospacer adjacent motif (PAM, 5'-NGG-3') recognized by SpCas9 limits the number of potential target sites for this system. Staphylococcus aureus Cas9 (SaCas9), with its smaller size and unique PAM (5'-NNGRRT-3') preferences, presents an alternative for genome editing in zygotes. Here, we showed that SaCas9 could efficiently and specifically edit the X-linked gene Slx2 and the autosomal gene Zp1 in mouse zygotes. SaCas9-mediated disruption of the tyrosinase (Tyr) gene led to C57BL/6J mice with mosaic coat color. Furthermore, multiplex targeting proved efficient multiple genes disruption when we co-injected gRNAs targeting Slx2, Zp1, and Tyr together with SaCas9 mRNA. We were also able to insert a Flag tag at the C-terminus of histone H1c, when a Flag-encoding single-stranded DNA oligo was co-introduced into mouse zygotes with SaCas9 mRNA and the gRNA. These results indicate that SaCas9 can specifically cleave the target gene locus, leading to successful gene knock-out and precise knock-in in mouse zygotes, and highlight the potential of using SaCas9 for genome editing in preimplantation embryos and producing gene-modified animal models.
منابع مشابه
Utilization of the CRISPR/Cas9 system for the efficient production of mutant mice using crRNA/tracrRNA with Cas9 nickase and FokI-dCas9
The CRISPR/Cas9 system is a powerful genome editing tool for the production of genetically modified animals. To produce mutant mice, chimeric single-guide RNA (sgRNA) is cloned in a plasmid vector and a mixture of sgRNA and Cas9 are microinjected into the fertilized eggs. An issue associated with gene manipulation using the CRISPR/Cas9 system is that there can be off-target effects. To simplify...
متن کاملTailor-made gene silencing of Staphylococcus aureus clinical isolates by CRISPR interference
Preparing the genetically modified organisms have required much time and labor, making it the rate-limiting step but CRISPR/Cas9 technology appearance has changed this difficulty. Although reports on CRISPR/Cas9 technology such as genome editing and CRISPR interference (CRISPRi) in eukaryotes increased, those in prokaryotes especially in Staphylococci were limited. Thus, its potential in the ba...
متن کاملEfficient and Scalable Precision Genome Editing in Staphylococcus aureus through Conditional Recombineering and CRISPR/Cas9-Mediated Counterselection
Staphylococcus aureus is an important human pathogen, but studies of the organism have suffered from the lack of a robust tool set for its genetic and genomic manipulation. Here we report the development of a system for the facile and high-throughput genomic engineering of S. aureus using single-stranded DNA (ssDNA) oligonucleotide recombineering coupled with clustered regularly interspaced sho...
متن کاملEfficient Production of Biallelic RAG1 Knockout Mouse Embryonic Stem Cell Using CRISPR/Cas9
Background: Recombination Activating Genes (RAG) mutated embryonic stem cells are (ES) cells which are unable to perform V (D) J recombination. These cells can be used for generation of immunodeficient mouse. Creating biallelic mutations by CRISPR/Cas9 genome editing has emerged as a powerful technique to generate site-specific mutations in different sequences. Ob...
متن کاملHighly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9
The CRISPR/Cas9 system is an efficient and convenient tool for genome editing in plants. Cas9 nuclease derived from Streptococcus pyogenes (Sp) is commonly used in this system. Recently, Staphylococcus aureus Cas9 (SaCas9)-mediated genome editing was reported in human cells and Arabidopsis. Because SaCas9 (1053 a.a.) is smaller than SpCas9 (1368 a.a.), SaCas9 could have substantial advantages f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016